
.6cm
.

Introduction to Formal Languages,
Automata and Computability

Turing Machine

K. Krithivasan and R. Rama

Introduction to Formal Languages, Automata and Computability – p.1/57

Introduction

The concept of Turing machine is particularly helpful in offering
a clear and realistic demarcation of what constitutes a single step
of execution. The problem of how to separate the steps from one
another in a step-by-step procedure is clearly specified when it is
put into the form of a Turing machine table.

To start with, we may specify an effective procedure as follows :

An effective procedure is a set of rules which tell us, from moment

to moment, precisely how to behave. With this in mind, Turing’s

thesis may be stated as follows: Any process which could natu-

rally be called an effective procedure can be realised by a Turing

machine.
Introduction to Formal Languages, Automata and Computability – p.2/57

contd.

One cannot expect to prove Turing’s thesis, since the
term ‘naturally’ relates rather to human dispositions
than to any precisely defined quality of a process.
Support must come from intuitive arguments. Hence
it is called Turing’s hypothesis or Church-Turing
thesis and not as Turing’s theorem.
Till today Turing machine is taken as the model of
computation. Whenever a new model of computation
(like DNA computing, membrane computing) is
defined, it is the practice to show that this new model
is as capable as the Turing machine. This proves the
power of the new model of computation.

Introduction to Formal Languages, Automata and Computability – p.3/57

Turing Machine as an Acceptor

The Turing machine can be considered as an accepting device
accepting sets of strings. Later we shall see that Turing machines
accept the family of languages generated by type 0 grammars. The set
accepted by a Turing machine is called a recursively enumerable set.
When we consider the Turing machine as an accepting device, we
usually consider a one way infinite tape. The Turing machine consists
of a one way infinite read-write tape and a finite control.

a1 · · · an 6 b 6 b 6 b · · ·
↑
q0

Figure 1: Initial configuration
Introduction to Formal Languages, Automata and Computability – p.4/57

contd.

The input a1 . . . an is placed at the left end of the tape.
The rest of the cells contain the blank symbol 6 b.
Initially the tape head points to the leftmost cell in the
initial state q0. At any time the tape head will point to
a cell and the machine will be in a particular state.
Suppose the machine is in state q and pointing to a cell
containing the symbol a, then depending upon the δ
mapping (transition function) of the TM it will change
state to p and write a symbol X replacing a and move
its tape head one cell to the left or to the right. The
Turing machine is not allowed to move off the left end
of the tape. When it reaches a final state it accepts the
input. Now we consider the formal definition.

Introduction to Formal Languages, Automata and Computability – p.5/57

Definition

A Turing machine (TM) M = (K, Σ, Γ, δ, q0, F) is a
6-tuple, where

K is a finite set of states
Σ is a finite set of input symbols
Γ is a finite set of tape symbols, Σ ⊆ Γ, 6 b ∈ Γ is
the blank symbol
q0 in K is the initial state
F ⊆ K is the set of final states
δ is a mapping from K × Γ into K × Γ× {L,R}.

Introduction to Formal Languages, Automata and Computability – p.6/57

contd.

Note

(a) Turing machine mapping is defined in such a way that it is
deterministic. One can define nondeterministic TM.
Though they have the same power as far as accepting power
is concerned, the number of steps may exponentially
increase if a deterministic TM tries to simulate a
nondeterministic TM.

(b) In some formulations the head remaining stationary is
allowed. i.e., δ : K ×Γ → K ×Γ×{L, S,R}. But we shall
stick to {L,R} as remaining stationary can be achieved by
two moves, first moving right and then moving back left.

Introduction to Formal Languages, Automata and Computability – p.7/57

contd.

An Instantaneous Description (ID) of a Turing machine is a
string of the form α1qα2, α1, α2 ∈ Γ∗, q ∈ K.
This means that at that particular instance α1α2 is the content of
the tape of the Turing machine. q is the current state and the tape
head points to the first symbol of α2. See

α1 α2 6 b 6 b 6 b · · ·
↑
q

The relationship between IDs can be described as follows:

If X1 . . . Xi−1qXiXi+1 . . . Xm is an ID and

Introduction to Formal Languages, Automata and Computability – p.8/57

contd.

δ(q,Xi) = (p, Y,R) then the next ID will be
X1 . . . Xi−1Y pXi+1 . . . Xm.
If δ(q,Xj) = (p, Y, L) then the next ID will be
X1 . . . Xi−2pXi−1Y Xi+1 . . . Xm. We denote this as

X1 . . . Xi−1qXiXi+1 . . . Xm ` X1 . . . Xi−2pXi−1Y Xi+1 . . . Xm.

q0X1 . . . Xm is the initial ID. Initially the tape head points to the

leftmost cell containing the input. If qX1 . . . Xm is an ID and

δ(q,X1) = (p, Y, L), machine halts. i.e., moving off the left end

of the tape is not allowed. If X1 . . . Xmq is an ID, q is reading

the leftmost blank symbol. If δ(q, 6 b) = (p, Y,R) next ID will be

X1 . . . XmY p.
Introduction to Formal Languages, Automata and Computability – p.9/57

contd.

If δ(q, 6 b) = (p, Y, L) next ID will be

X1 . . . Xm−1pXmY .
∗
` is the reflexive, transitive

closure of `. i.e., ID0 ` ID1 ` · · · ` IDn is denoted
as ID0

∗
` IDn, n ≥ 0. An input will be accepted if the

TM reaches a final state.
Definition A string w is accepted by the TM,
M = (K, Σ, Γ, δ, q0, F) if q0w

∗
` α1qfα2 for some

α1, α2 ∈ Γ∗, qf ∈ F . The language accepted by the
TM M is denoted as

T (M) = {w|w ∈ Σ∗, q0w
∗

` α1qfα2 for some α1, α2 ∈ Γ∗, qf ∈ F}

Introduction to Formal Languages, Automata and Computability – p.10/57

Note

(a) It should be noted that by definition, it is not necessary for
the TM to read the whole input. If w1w2 is the input and the
TM reaches a final state after reading w1, w1w2 will be
accepted; for that matter any string w1wj will be accepted.
Usually while constructing a TM we make sure that the
whole of the input is read.

(b) Usually we assume that after going to a final state, the TM
halts, i.e., it makes no more moves.

(c) A string w will not be accepted by the TM, if it reaches an
ID η1rη2 from which it cannot make a next move;
η1η2 ∈ Γ∗, r ∈ K and r is not a final state or while reading
w, the TM gets into a loop and is never able to halt.

Introduction to Formal Languages, Automata and Computability – p.11/57

Example

Let us consider a TM for accepting {aibjck|i, j, k ≥ 1, i = j + k}.
The informal description of the TM is as follows. Consider the figure
which shows the initial ID.

aa · · · a · · · aab · · · bc · · · c 6 b 6 b 6 b · · ·
↑
q0

The machine starts reading a ‘a’ and changing it to a X; it moves right;

when it sees a ‘b’, it converts it into a Y and then starts moving left. It

matches a’s and b’s. After that, it matches a’s with c’s. The machine

accepts when the

Introduction to Formal Languages, Automata and Computability – p.12/57

contd.

number of a’s is equal to the sum of the number of b’s
and the number of c’s.
Formally M = (K, Σ, Γ, δ, q0, F)
K = {q0, q1, q2, q3, q4, q5, q6, q7, q8} F = {q8}
Σ = {a, b, c}
Γ = {a, b, c,X, Y, Z, 6 b}
δ is defined as follows:
δ(q0, a) = (q1, X,R)
In state q0, it reads a ‘a’ and changes it to X and
moves right in q1.
δ(q1, a) = (q1, a, R)

In state q1 it moves right through the ‘a’s.

Introduction to Formal Languages, Automata and Computability – p.13/57

contd.

δ(q1, b) = (q2, Y, L)
When it sees a ‘b’ it changes it into a Y .
δ(q2, a) = (q2, a, L)
δ(q2, Y) = (q2, Y, L)
In state q2 it moves left through the ‘a’s and Y s.
δ(q2, X) = (q0, X,R)
When it sees a X it moves right in q0 and the process
repeats.
δ(q1, Y) = (q3, Y, R)
δ(q3, Y) = (q3, Y, R)
δ(q3, b) = (q2, Y, L)

After scanning the ‘a’s it moves through the Y s still it
Introduction to Formal Languages, Automata and Computability – p.14/57

contd.

sees a ‘b’, then it converts it into a Y and moves left.
δ(q3, c) = (q4, Z, L)
When no more ‘b’s remain it sees a ‘c’ in state q3,
changes that it into Z and starts moving left in state
q4. The process repeats. After matching ‘a’s and ‘b’s,
the TM tries to match ‘a’s and ‘c’s.
δ(q4, Y) = (q4, Y, L)
δ(q4, a) = (q4, a, L)
δ(q4, X) = (q0, X,R)
δ(q3, Z) = (q5, Z,R)
δ(q5, c) = (q4, Z, L)
δ(q5, Z) = (q5, Z,R)
δ(q4, Z) = (q4, Z, L)

Introduction to Formal Languages, Automata and Computability – p.15/57

contd.

When no more ‘a’s remain it sees a Y in state q0

checks that all ‘b’s and ‘c’s have been matched and
reaches the final state q8.
δ(q0, Y) = (q6, Y, R)
δ(q6, Y) = (q6, Y, R)
δ(q6, Z) = (q7, Z,R)
δ(q7, Z) = (q7, Z,R)
δ(q7, 6 b) = (q8, 6 b, halt)

Introduction to Formal Languages, Automata and Computability – p.16/57

contd.

Let us see how a string aaabbcc will be rejected. Let
us trace the sequence of IDs on aaabbcc

q0aaabbcc ` Xq1aabbcc ` Xaq1abbcc ` Xaaq1bbcc ` Xaq2aY bcc

` Xq2aaY bcc ` q2XaaY bcc ` Xq0aaY bcc ` XXq1aY bcc

` XXaq1Y bcc ` XXaY q3bcc ` XXaY Y cc ` XXq2aY Y cc

` Xq2XaY Y cc ` XXq0aY Y cc ` XXXq1Y Y cc ` XXXY q3Y cc

` XXXY Y q3cc ` XXXY q4Y Zc ` XXXq4Y Y Zc ` XXq4XY Y Zc

` XXXq0Y Y Zc ` XXXY q6Y Zc ` XXXY Y q6Zc ` XXXY Y Zq7c

Introduction to Formal Languages, Automata and Computability – p.17/57

contd.

The machine halts without accepting as there is no
move for (q7, c).
Let us see the sequence of moves for aaaabc

q0aaabc ` Xq1aaabc ` Xaq1aabc ` Xaaq1abc ` Xaaaq1bc

` Xaaq2aY c ` Xaq2aaY c ` Xq2aaaY c ` q2XaaaY c

` Xq0aaaY c ` XXq1aaY c ` XXaq1aY c ` XXaaq1Y c

` XXaaY q3c ` XXaaq4Y Z ` XXaq4aY Z ` XXq4aaY Z

` Xq4XaaY Z ` XXq0aaY Z ` XXXq1aY Z ` XXXaq1Y Z

` XXXaY q3Z ` XXXaY Zq5

The machine halts without accepting as there is no
further move possible and q5 is not an accepting state.
It can be seen that only strings of the form ai+jbicj

will be accepted.
Introduction to Formal Languages, Automata and Computability – p.18/57

Example

Construct a Turing machine which will accept the set
of strings over Σ = {a, b} beginning with a ‘a’ and
ending with a ‘b’.
Though this set can be accepted by a FSA, we shall
give a TM accepting it.
M = (K, Σ, Γ, δ, q0, F) where
K = {q0, q1, q2, q3} F = {q3}
Σ = {a, b} Γ = {a, b,X, 6 b}
δ is defined as follows:
δ(q0, a) = (q1, X,R)
δ(q1, a) = (q1, X,R)
δ(q1, b) = (q2, X,R)
δ(q2, a) = (q1, X,R)

Introduction to Formal Languages, Automata and Computability – p.19/57

contd.

δ(q2, b) = (q2, X,R)
δ(q2, 6 b) = (q3, halt)
Let us see how the machine accepts abab.
a b a b 6 b · · ·
↑
q0

X b a b 6 b · · ·
↑
q1

X X a b 6 b · · ·
↑
q2 Introduction to Formal Languages, Automata and Computability – p.20/57

contd.

X X X b 6 b · · ·
↑
q1

X X X X 6 b · · ·
↑
q2

X X X X 6 b · · ·
↑
q3

It can be seen that after initially reading ‘a’, the ma-
chine goes to state q1.

Introduction to Formal Languages, Automata and Computability – p.21/57

contd.

Afterwards if it sees a ‘a’ it goes to state q1; if it sees a
‘b’ it goes to q2. Hence when it sees the leftmost blank
symbol, if it is in state q2 it accepts as this means that
the last symbol read is a ‘b’.

Introduction to Formal Languages, Automata and Computability – p.22/57

Turing Machine as a Computing De-
vice

We looked at the Turing machine as an acceptor. In
this section, we consider the Turing machine as a
computing device. It computes functions which are
known as partial recursive functions.
Example[Unary to binary converter] The input is a
string of a’s which is taken as the unary representation
of an integer; ai represents integer i. The output is of
the form biX

i where bi is a binary string which is the
binary representation of integer i. The mapping for
the Turing machine which does this is given below.
The tape symbols are {6 b, a,X, 0, 1}. The machine
has two states q0 and q1. q0 is the initial state and a
right moving state. q1 is a left moving state.

Introduction to Formal Languages, Automata and Computability – p.23/57

contd.

δ(q0, a) = (q1, X, L)
δ(q1, X) = (q1, X, L)
δ(q1, 6 b) = (q0, 1, R)
δ(q1, 0) = (q0, 1, R)
δ(q1, 1) = (q1, 0, L)
δ(q0, X) = (q0, X,R)
δ(q0, 6 b) = (q2, 6 b, halt)
The machine works like a binary counter. When it has
converted j ‘a’s into X’s, it prints binary number j to
the left of the position where it started. On input
aaaaa the TM should output 101XXXXX .

Introduction to Formal Languages, Automata and Computability – p.24/57

Copy machine

Given an input #w#, where w is a string of a’s and b’s, the machine
makes a copy of w and halts with #w#w#. The machine starts in
state q0, the initial state on the leftmost symbol of w.

It reads a ‘a’ changes that into a X and moves right in state qa. When

it sees the first blank symbol, it prints a ‘a’ and moves left in state q1.

If it sees a ‘b’ in q0, it changes that into a Y and moves right in state qb.

When it sees the first blank symbol, it prints a ‘b’ and moves left in state

q1. In state q1 it moves left till it sees a ‘X’ or a ‘Y ’ and the process

repeats. When no more ‘a’ or ‘b’ remains to be copied, the machine

goes to q2, prints a # after the copy

Introduction to Formal Languages, Automata and Computability – p.25/57

contd.

it has made and moves left in q3. In q3 it moves
left till the # symbol. Then moving left it converts the
‘X’s and ‘Y ’s into ‘a’s and ‘b’s respectively and halts
when it sees the leftmost # symbol. qa and qb are used
to remember the symbol the machine has read.
The state set is {q0, qa, qb, q1, q2, q3, q4, q5}.
Tape symbols are {#, a, b,X, Y, 6 b}
δ mappings are given by :
δ(q0, a) = (qa, X,R)
δ(qa, a) = (qa, a, R)
δ(q0, b) = (qb, Y, R)
δ(qb, a) = (qb, a, R)
δ(qa, b) = (qa, b, R)

Introduction to Formal Languages, Automata and Computability – p.26/57

contd.

δ(qa, #) = (qa, #, R)
δ(qa, 6 b) = (q1, a, L)
δ(qb, b) = (qb, b, R)
δ(qb, #) = (qb, #, R)
δ(qb, 6 b) = (q1, b, L)
δ(q1, a) = (q1, a, L)
δ(q1, b) = (q1, b, L)
δ(q1, #) = (q1, #, L)
δ(q1, X) = (q0, X,R)
δ(q1, Y) = (q0, Y, R)
δ(q0, #) = (q2, #, R)
δ(q2, a) = (q2, a, R)
δ(q2, b) = (q2, b, R)

Introduction to Formal Languages, Automata and Computability – p.27/57

contd.

δ(q2, 6 b) = (q3, #, L)
δ(q3, a) = (q3, a, L)
δ(q3, b) = (q3, b, L)
δ(q3, #) = (q4, #, L)
δ(q4, X) = (q4, a, L)
δ(q4, Y) = (q4, b, L)
δ(q4, #) = (q5, #, halt)

Introduction to Formal Languages, Automata and Computability – p.28/57

contd.

The sequence of moves in input #abb# can be
described as follows :
#q0abb# ` #Xqabb#

∗

` #Xbb#qa ` #Xbbq1#a
∗

` #q1Xbb#a

` #Xq0bb#a ` #XY qbb#a
∗

` #XY b#aqb ` #XY b#q1ab

∗

` #XY q0b#ab ` #XY Y qb#ab
∗

` #XY Y #abqb

∗

` #XY Y #aq1bb

∗

` #XY Y q0#abb ` #XY Y #q2abb
∗

` #XY Y #abbq2 ` #XY Y #abq3b#

∗

` #XY Y q3#abb# ` #XY q4Y #abb#
∗

` q4#abb#abb# ` q5#abb#abb#

Introduction to Formal Languages, Automata and Computability – p.29/57

Example

Given two integers i and j, i > j, to compute the quotient and
reminder when i is divided by j.
The input is

· · · # ai # bj # · · ·
↑

with the tape head positioned on the leftmost ‘b’ in the initial
state q0.
The output is

· · · # X i # bj # ck # d` # · · ·
where k is the quotient when i is divided by j and l is the
remainder. The TM which does this is described as follows :

The TM converts the b’s into Y ’s and a’s into X’s one by one.
Introduction to Formal Languages, Automata and Computability – p.30/57

contd.

When it sees no more b’s it prints a ‘c’ after the # meaning j has
been subtracted from i once

· · · # Xj ai−j # bj # c · · ·
This repeats as many times as possible. Each time a ‘c’ is printed.

Finally when the number of a’s which have to be converted to X’s

is less than j, the TM while trying to convert a ‘a’ into a ‘X’, will

not find a ‘a’. At this stage it would have converted (i mod j + 1)

b’s into Y ’s. The TM prints a # after c’s and prints i mod j + 1

d’s. It does this by changing a Y into a ‘b’ and printing a ‘d’ after

rightmost # and d’s. When all the Y ’s have been converted into

Introduction to Formal Languages, Automata and Computability – p.31/57

contd.

b’s, we have i mod j + 1 d’s after the rightmost #. The
TM erases the last d and prints a # and halts. The set
of states are {q0, . . . , q21}. The tape symbols are
{6 b, #, a, b, c, d,X, Y }
The mappings are given by
δ(q0, b) = (q1, Y, L)
changes ‘b’ to Y and moves left.
δ(q1, Y) = (q1, Y, L)
δ(q1, #) = (q2, #, L)
δ(q2, a) = (q2, a, L)
moves left.
δ(q2, #) = (q3, #, R)
δ(q2, X) = (q3, X,R)

Introduction to Formal Languages, Automata and Computability – p.32/57

contd.

when the leftmost # or an X is seen the head starts
moving right
δ(q3, a) = (q4, X,R)
one ‘a’ is changed into X
δ(q4, a) = (q4, a, R)
δ(q4, #) = (q5, #, R)
δ(q5, Y) = (q5, Y, R)
moves right
δ(q5, b) = (q1, Y, L)
process starts repeating
δ(q5, #) = (q6, #, R)
all ‘b’s have been converted to Y s
δ(q6, c) = (q6, c, R)
δ(q6, 6 b) = (q7, c, L) Introduction to Formal Languages, Automata and Computability – p.33/57

contd.

one ‘c’ is printed
δ(q7, c) = (q7, c, L)
δ(q7, #) = (q8, #, L)
moves left
δ(q8, Y) = (q8, b, L)
Y s are changed back to ‘b’s
δ(q8, #) = (q0, #, R)
process starts repeating
δ(q3, #) = (q9, #, R)
all ‘a’s have been changed. Now the number of ‘c’s
represents the quotient. Y s represented the remainder
δ(q9, Y) = (q9, Y, R)
δ(q9, b) = (q9, b, R)

Introduction to Formal Languages, Automata and Computability – p.34/57

contd.

δ(q9, #) = (q10, #, R)
δ(q10, c) = (q10, c, R)
moves right
δ(q10, 6 b) = (q11, #, L)
is printed after the ‘c’s
δ(q11, c) = (q11, c, L)
δ(q11, #) = (q12, #, L)
δ(q12, b) = (q12, b, L)
δ(q12, Y) = (q13, b, R)
δ(q13, b) = (q13, b, R)
δ(q13, #) = (q14, #, R)
δ(q14, c) = (q14, c, R)
δ(q14, #) = (q15, #, R)

Introduction to Formal Languages, Automata and Computability – p.35/57

contd.

δ(q15, d) = (q15, d, R)
δ(q15, 6 b) = (q16, d, L)
δ(q16, d) = (q16, d, L)
δ(q16, #) = (q11, #, L)
Y s are copied as ‘d’s
δ(q12, #) = (q17, #, R)
after all Y s have been copied as ‘d’s the process starts
finishing
δ(q17, b) = (q17, b, R)
δ(q17, #) = (q18, #, R)
δ(q18, c) = (q18, c, R)
δ(q18, #) = (q19, #, R)
δ(q19, d) = (q19, d, R)

Introduction to Formal Languages, Automata and Computability – p.36/57

contd.

δ(q19, 6 b) = (q20, 6 b, L)
δ(q20, d) = (q21, #, halt)
The move of a TM can be represented as a state
diagram

X / Y, R

p q

means the TM when in state p and reading X , prints a
Y over X , goes to state q and moves right.
The state diagram for previous example can be repre-
sented as

Introduction to Formal Languages, Automata and Computability – p.37/57

contd.

q 0 q a

q b

q 1

q 2

q 3
q 4 q 5

a/X,R

b/Y,R

a/a,R

b/b,R

#/#,R

b/a,L

a/a,L

b/b,L

#/#,L

b/b,R

a/a,R#/#,R

a/a,R b/b,R
#/#,R

b/b,L

a/a,L

b/b,L

#/#,L

X/a,L

Y/b,L

#,#

X/X,R
Y/Y,R

b/#

Introduction to Formal Languages, Automata and Computability – p.38/57

Techniques for Turing Machine Con-
struction

Designing a Turing machine to solve a problem is an interesting

task. It is somewhat similar to programming. Given a problem,

different Turing machines can be constructed to solve it. But we

would like to have a Turing machine which does it in a simple

and efficient manner. Like we learn some techniques of program-

ming to deal with alternatives, loops etc, it is helpful to understand

some techniques in Turing machine construction, which will help

in designing simple and efficient Turing machines. It should be

noted that we are using the word ‘efficient’ in an intuitive manner

here.
Introduction to Formal Languages, Automata and Computability – p.39/57

contd.

1. Considering the state as a tuple.
In an earlier example we considered a Turing machine which
makes a copy of a given string over Σ = {a, b}. After reading a
‘a’, the machine remembers it by going to qa and after reading a
‘b’, it goes to qb. In general we can represent the state as [q, x]

where x ∈ Σ denoting that it has read a ‘x’.
2. Considering the tape symbol as a tuple.

Sometimes we may want to mark some symbols without destroy-

ing them or do some computation without destroying the input. In

such cases it is advisable to have multiple tracks on the tape. This

is equivalent to considering the tape symbol as a tuple.

Introduction to Formal Languages, Automata and Computability – p.40/57

contd.

. . . A . . .

. . . B . . .

. . . C . . .

↑
There is only one tape head. In the above figure there are three

tracks. The head is pointing to a cell which contains A on the

first track, B on the second track and C on the third track. The

tape symbol is taken a 3-tuple [A,B,C]. Some computation can

be done in one track by manipulating the respective component of

the tape symbol. This is very useful in checking off symbols.
Introduction to Formal Languages, Automata and Computability – p.41/57

contd.

3. Checking off symbols.
We use one track of the tape to mark that some symbols have
been read without changing them.
Example
Consider a Turing machine for accepting

w#w#w,w ∈ {a, b}∗

A tape having two tracks is considered.

. . . a b b # a b b # a b b . . .

.

Introduction to Formal Languages, Automata and Computability – p.42/57

contd.

The first track contains the input. When the TM reads the first a

in state q0, it stores it in its memory (by taking the state as a pair),

checks off ‘a’ by printing a
√

in the second track below a, moves

right and after the # symbol checks whether the symbol is a ‘a’.

If so marks it by putting a
√

in the second track, moves right and

again checks the first symbol after # is a ‘a’ and if so it marks also.

It then moves left and repeats the process with each unmarked

leftmost symbols in each block. When all the symbols in the first

block match with the second and third blocks, the machine halts

accepting the string.
Introduction to Formal Languages, Automata and Computability – p.43/57

contd.

The mappings can be defined as follows:
δ(q0, [a, 6 b]) = ([q, a], [a,

√
], R)

δ(q0, [b, 6 b]) = ([q, b], [b,
√

], R)
The machine reads the leftmost symbol marks it and
remembers whether it is a ‘a’ or ‘b’ by storing it in the
state δ([q, a], [a, 6 b]) = ([q, a], [a, 6 b], R)
δ([q, a], [b, 6 b]) = ([q, a], [b, 6 b], R)
δ([q, b], [a, 6 b]) = ([q, b], [a, 6 b], R)
δ([q, b], [b, 6 b]) = ([q, b], [b, 6 b], R)
The head passes through symbols in the first block to
the right
δ([q, a], [#, 6 b]) = ([p, a], [#, 6 b], R)
δ([q, b], [#, 6 b]) = ([p, b], [#, b], R)

Introduction to Formal Languages, Automata and Computability – p.44/57

contd.

When the head encounters a # in the first track, the
first component of the state is changed to p.
δ([p, a], [a,

√
]) = ([p, a], [a,

√
], R)

δ([p, a], [b,
√

]) = ([p, a], [b,
√

], R)
δ([p, b], [a,

√
]) = ([p, b], [a,

√
], R)

δ([p, b], [b,
√

]) = ([p, b], [b,
√

], R)
δ([p, a], [a, 6 b]) = ([r, a], [a,

√
], R)

δ([p, b], [b, 6 b]) = ([r, b], [b,
√

], R)

Introduction to Formal Languages, Automata and Computability – p.45/57

contd.

When it encounters a first unchecked symbol it marks
it by putting a

√
in the second track and changes the

first component of the state to r.
δ([r, a], [a, 6 b]) = ([r, a], [a, 6 b], R)
δ([r, b], [a, 6 b]) = ([r, b], [a, 6 b], R)
δ([r, a], [b, 6 b]) = ([r, a], [b, 6 b], R)
δ([r, b], [b, 6 b]) = ([r, b], [b, 6 b], R)

The head moves through the second block without
changing symbols, when the first component of the
state is r

Introduction to Formal Languages, Automata and Computability – p.46/57

contd.

δ([r, a], [#, 6 b]) = ([s, a], [#, 6 b], R)
δ([r, b], [#, 6 b]) = ([s, b], [#, 6 b], R)
When it encounters a # in the first track it moves right
into the third block changing the first component of
the state to s
δ([s, a], [a,

√
]) = ([s, a], [a,

√
], R)

δ([s, a], [b,
√

]) = ([s, a], [b,
√

], R)
δ([s, b], [a,

√
]) = ([s, b], [a,

√
], R)

δ([s, b], [b,
√

]) = ([s, b], [b,
√

], R)
It moves right looking for the unchecked symbol
δ([s, b], [b, 6 b]) = (t, [b,

√
], L)

δ([s, a], [a, 6 b]) = (t, [a,
√

], L)

When it encounters an unchecked symbol in the third
Introduction to Formal Languages, Automata and Computability – p.47/57

contd.

it marks it by putting a
√

in the second track and
starts moving left.
δ(t, [a,

√
]) = (t, [a,

√
], L)

δ(t, [b,
√

]) = (t, [b,
√

], L)
δ(t, [#,

√
]) = (t′, [#,

√
], L)

It moves into the second block in state t′

δ(t′, [a, 6 b]) = (t′, [a, 6 b], L)
δ(t′, [b, 6 b]) = (t′, [b, 6 b], L)
δ(t′, [a,

√
]) = (t′, [a,

√
], L)

δ(t′, [b,
√

]) = (t′, [b,
√

], L)
It moves left in the second block.
δ(t′, [#, 6 b]) = (t′′, [#, b], L)
It moves left into the first block in state t′′.

Introduction to Formal Languages, Automata and Computability – p.48/57

contd.

δ(t′′, [a, 6 b]) = (t′′, [a, 6 b], L)
δ(t′′, [b, 6 b]) = (t′′, [b, 6 b], L)
It moves left in the first block through unchecked
symbols.
When it encounters a checked symbol it moves right
in state q0 and the whole process repeats
δ(t′′, [a,

√
]) = (q0, [a,

√
], R)

δ(t′′, [b,
√

]) = (q0, [b,
√

], R)
This way the machine checks for same symbols in the
first, second and third blocks.
Finishing
When the machine encounters a # in the first track in
state q0, it means it has checked all symbols in the first
block. Now it has to check that there are no moreIntroduction to Formal Languages, Automata and Computability – p.49/57

contd.

symbols in the second and third block.
δ(q0, [#, 6 b]) = (q1, [#, 6 b], R)

δ(q1, [a,
√

]) = (q1, [a,
√

], R)

δ(q1, [b,
√

]) = (q1, [b,
√

], R)

If it encounters an unchecked symbol, it halts without accepting
δ(q1, [a, 6 b]) = (qn, [a, 6 b], R)

δ(q1, [b, 6 b]) = (qn, [b, 6 b], R)

If it finds all symbols are checked in the second block, it moves
to the third block in state q2

δ(q1, [#, 6 b]) = (q2, [#, 6 b], R)

In the third block it checks whether all symbols have already been

checked. If so, it halts in accepting state qy.
Introduction to Formal Languages, Automata and Computability – p.50/57

contd.

Otherwise halts in nonaccepting state qn

δ(q2, [a,
√

]) = (q2, [a,
√

], R)
δ(q2, [b,

√
]) = (q2, [b,

√
], R)

δ(q2, [a, 6 b]) = (qn, [a, 6 b], R)
δ(q2, [b, 6 b]) = (qn, [b, 6 b], R)
δ(q2, [6 b, 6 b]) = (qy, [6 b, 6 b], R)
If the input has more symbols in the first block (than
second block) it moves in the second block in state
[p, a] or [p, b] and encounters [#, 6 b]. Then it halts
rejecting the input
δ([p, a], [#, 6 b]) = (qn, [#, 6 b], R)
δ([p, b], [#, 6 b]) = (qn, [#, 6 b], R)

If the input has equal symbols in the first and second
Introduction to Formal Languages, Automata and Computability – p.51/57

contd.

block but less symbols in the third block, the machine encounters
[6 b, 6 b] an state [s, b] or [s, a] and halts without accepting
δ([s, a], [6 b, 6 b]) = (qn, [6 b, 6 b], R)

δ([s, b], [6 b, 6 b]) = (qn, [6 b, 6 b], R)

Thus we find that having two tracks and using the second track to
check off symbols is a useful technique.
When we consider a single tape multitrack TM, we really take
the tape symbol as a tuple. This need not be considered as a
variation of Turing machine.
4. Shifting over.

Sometimes we may have to shift symbols on the tape to the right

or left to allow for some symbols to be written.
Introduction to Formal Languages, Automata and Computability – p.52/57

contd.

Suppose the contents of the tape are a1 . . . ai−1Aai+1 . . . an at
some instant. A has to be replaced by abcd say. Then ai+1 . . . an

have to be shifted three cells to the right and then in the space
created abcd can be printed. We can use the state as a tuple to
store some information and shift symbols. Suppose the head is
reading ai+1 in state q and the shifting process has to start.
Then the TM reads ai+1 and goes to a state [q,−,−, ai+1] and
prints X over ai.
The ID

a1 . . . ai1 A ai+1 . . . an 6 b . . .

↑
q

Introduction to Formal Languages, Automata and Computability – p.53/57

contd.

changes to

a1 . . . ai1 A X ai+2 . . .

↑
[q,−,−, ai+1]

Next, the TM reads ai+2, storing it in the fourth
component, and shifting ai+1 from fourth component
to the third component
δ([q,−,−, ai+1], ai+2) = ([q,−, ai+1, ai+2], X,R)
Similarly
δ([q,−, ai+1, ai+2], ai+3) = ([q, ai+1, ai+2, ai+3], X,R)

When it reads ai+4, it deposits ai+1 in that cell
Introduction to Formal Languages, Automata and Computability – p.54/57

contd.

δ([q, ai+1, ai+2, ai+3], ai+4) =
([q, ai+2, ai+3, ai+4], ai+4, R)
In general
δ([q, aj, aj+1, aj+2], aj+3) =
([q, aj+1, aj+2, aj+3], aj, R) i + 1 ≤ j ≤ n
where an+1, an+2, an+3 are blank symbol 6 b. Finally it
starts moving left
δ([q, an, 6 b, 6 b], 6 b) = (q′, an, L)

In q′ it moves left till it finds AXXX and replaces it
by abcd. A similar method can be used for shifting
symbols to the left. Thus storing some information in
some components of the state and cyclically moving

Introduction to Formal Languages, Automata and Computability – p.55/57

contd.

the components helps in the technique of shifting off
symbols.
5. Subroutines.
Just as a computer program has a main procedure and
subroutines, the TM can also be programmed to have
a main TM and TMs which serve as subroutines.
Suppose we have to make n copies of a word w. Input
is #w# and the output is #w# www . . . w

︸ ︷︷ ︸

n times

.

In this case we can write the mappings for a TM Msub

which when started on #w#x ends up with #w#xw.
The main TM will call this Msub x times. Similarly for
multiplying two unary numbers m and n, n has to be

Introduction to Formal Languages, Automata and Computability – p.56/57

contd.

copied on m times. We can write a sub TM for
copying and main TM will call this m times.
In order that a Turing machine M1 uses another
Turing machine M2 as a subroutine, the states of M1

and M2 have to be disjoint. Also when M1 wants to
call M2, from a state of M1, the control goes to the
initial state of M2. When the subroutine finishes and
returns to M1, from the halting state of M2, the
machine goes to some state of M1. Note that a
subroutine TM call another TM as its subroutine. This
technique helps to construct a TM in a topdown
manner dividing the work into tasks and writing a TM
for each task and combining them.

Introduction to Formal Languages, Automata and Computability – p.57/57

	Introduction
	contd.
	Turing Machine as an Acceptor
	contd.
	Definition
	contd.
	contd.
	contd.
	contd.
	Note
	Example
	contd.
	contd.
	contd.
	contd.
	contd.
	contd.
	Example
	contd.
	contd.
	contd.
	Turing Machine as a Computing Device
	contd.
	Copy machine
	contd.
	contd.
	contd.
	contd.
	Example
	contd.
	contd.
	contd.
	contd.
	contd.
	contd.
	contd.
	contd.
	Techniques for Turing Machine Construction
	contd.
	contd.
	contd.
	contd.
	contd.
	contd.
	contd.
	contd.
	contd.
	contd.
	contd.
	contd.
	contd.
	contd.
	contd.
	contd.
	contd.
	contd.

